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1 Executive Summary 

In this project, we targeted the enhancement of computational models used for simulating and 

forecasting global and ultraviolet radiation at the surface level. Recognising the limitations of 

current models, our primary objective was to identify the factors contributing to inaccuracies 

in radiation data, leveraging advanced data-driven methodologies. 

 

Central to our approach was the development and implementation of a post-process correction 

method, employing machine learning techniques, notably the XGBoost algorithm, to correct 

for the biases within the global horizontal irradiation (GHI) and ultraviolet index (UVI) data 

from the CAMS service. The integration of SHapley Additive exPlanations (SHAP) analysis 

with this model provided deep insights into the influence of individual variables on the 

predictions, enhancing the interpretability and accuracy of the model. 

 

A significant achievement of our work was the notable improvement in the precision of 

radiation data, as demonstrated by the reduced error standard deviation in post-process 

corrected data across various radiation intensities. Furthermore, we introduced a data-driven 

approach for uncertainty quantification, employing an ensemble technique that quantified the 

radiation data's reliability and revealed patterns in uncertainty distribution. 

 

The outcomes of this project mark an advancement in the field of radiation simulation and 

forecasting. The refined models and methodologies developed promise improved accuracy and 

reliability in radiation data and provide a robust framework for future research and 

development in this domain.  
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2 Introduction 

2.1 Background 

 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 

flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 

(CAMS) providing free and continuous data and information on atmospheric composition.  

The CAMS Service Evolution (CAMEO) project will enhance the quality and efficiency of the 

CAMS service and help CAMS to better respond to policy needs such as air pollution and 

greenhouse gases monitoring, the fulfilment of sustainable development goals, and sustainable 

and clean energy.  

 

CAMEO will help prepare CAMS for the uptake of forthcoming satellite data, including 

Sentinel-4, -5 and 3MI, and advance the aerosol and trace gas data assimilation methods and 

inversion capacity of the global and regional CAMS production systems.  

CAMEO will develop methods to provide uncertainty information about CAMS products, in 

particular for emissions, policy, solar radiation and deposition products in response to 

prominent requests from current CAMS users.  

 

CAMEO will contribute to the medium- to long-term evolution of the CAMS production 

systems and products.  

 

The transfer of developments from CAMEO into subsequent improvements of CAMS 

operational service elements is a main driver for the project and is the main pathway to impact 

for CAMEO.  

 

The CAMEO consortium, led by ECMWF, the entity entrusted to operate CAMS, includes 

several CAMS partners thus allowing CAMEO developments to be carried out directly within 

the CAMS production systems and facilitating the transition of CAMEO results to future 

upgrades of the CAMS service.  

 

This will maximise the impact and outcomes of CAMEO as it can make full use of the existing 

CAMS infrastructure for data sharing, data delivery and communication, thus supporting 

policymakers, business and citizens with enhanced atmospheric environmental information. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

 

This document provides the results of the analysis related to global horizontal irradiation 

(GHI) and UV index (UVI) errors and uncertainties in CAMS radiation services and forecast 

data products aiming at revealing patterns in CAMS radiation product biases and 

uncertainties. 

 

2.2.2 Work performed in this deliverable 

 

In this deliverable the work as planned in the Description of Action (DoA, WP4 T4.3.3 and 

T4.3.4) was performed. 
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2.2.3 Deviations and counter measures 

 

No deviations have been encountered. 

 

 

 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 

FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 

NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH 

INSTITUUT-KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 

INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT 

EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 

DEVELOPPEMENT DES METHODES ET PROCESSUS 

INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 

SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 

ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 

NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT 

INDUSTRIEL ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 

INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 

L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 
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3 Radiation datasets 

3.1 Global radiation 

 

3.1.1 Observed data 

 

Ground-based global radiation measurements are obtained from 21 stations. The stations and 

data are from the BSRN, SAURAN, and ENERMA networks. The data has undergone a 

thorough quality control and we have only selected to use data from stations that have been 

marked as good or very good quality flag by the quality control procedures to ensure good 

enough quality data for our analyses. Figure 1 displays the locations of the stations on a map. 

Table 1 reports the stations, their location coordinates and altitude. Data from full year 2019 is 

used. 

 

Table 1. List of global radiation stations with latitude, longitude, and elevation information. 

Station Latitude (°) Longitude (°) Elevation (m) 

BSRN_Bud 47.43 19.18 139 

BSRN_Cab 51.97 4.93 0 

BSRN_Cnr 42.82 -1.6 471 

BSRN_Flo -27.6 -48.52 11 

BSRN_Gob -23.56 15.04 407 

BSRN_Ino 44.34 26.01 110 

BSRN_Iza 28.31 -16.5 2373 

BSRN_Lin 52.21 14.12 125 

BSRN_Pal 48.71 2.21 156 

BSRN_Pay 46.81 6.94 491 

BSRN_Run -20.9 55.48 116 

BSRN_Son 47.05 12.96 3109 

SAURAN_Csir -25.75 28.28 1400 

SAURAN_Cut -29.12 26.22 1397 

SAURAN_Nmu -34.01 25.67 35 

SAURAN_Sun -33.93 18.87 119 

SAURAN_Upr -25.75 28.23 1410 

ENERMENA_Erf 31.49 -4.22 859 

ENERMENA_Jor 30.17 35.82 1012 

ENERMENA_Tn 32.97 10.48 210 

ENERMENA_Zag 30.27 -5.85 783 
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Table 2. List of CAMS radiation service expert mode quantities used as model inputs in 

global radiation study. 

 

Variable Description 

albedo Ground albedo 

AODAM Partial aerosol optical depth at 550 nm for ammonium 

AODBC Partial aerosol optical depth at 550 nm for black carbon 

AODDU Partial aerosol optical depth at 550 nm for dust 

AODNI Partial aerosol optical depth at 550 nm for nitrate 

AODOR Partial aerosol optical depth at 550 nm for organic matter 

AODSO Partial aerosol optical depth at 550 nm for secondary organics 

AODSS Partial aerosol optical depth at 550 nm for sea salt 

AODSU Partial aerosol optical depth at 550 nm for sulphate 

Cloud Modification 

Factor Global horizontal irradiation / Clear sky global horizontal irradiation 

CloudCoverage Cloud coverage of the pixel 

CloudOpticalDepth Cloud optical depth 

CloudType 

Cloud type 0=no clouds 5=low-level cloud 

6=medium-level cloud 7=high-level cloud 8=thin cloud 

fgeo MODIS-like surface reflectance BRDF parameter fgeo 

fiso MODIS-like surface reflectance BRDF parameter fiso 

fvol MODIS-like surface reflectance BRDF parameter fvol 

GHI Global irradiation on horizontal plane at ground level (Wh/m2) 

Snow_probability Snow probability of the pixel 

SummerWinterSplit Summer/winter split. 1.0 means summer, 0.0 means winter 

SZA Solar zenithal angle for the middle of the summarization (deg) 

TCO3 Total column content of ozone (Dobson unit) 

TCWV Total column content of water vapour (kg/m2) 

TOA Irradiation on horizontal plane at the top of atmosphere (Wh/m2) 
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Figure 1. Locations of global radiation stations. 

 

3.1.2 Model data 

 

As the model data, we use the CAMS radiation service expert mode data (Schroedter-

Homscheidt et al., 2022, Qu et al., 2017, Lefèvre et al., 2013, Gschwind et al., 2019). The data 

provides radiation quantities as well as the input parameters used in the radiative transfer 

modelling. We collocate the model data with the ground-based observations and form our 

dataset for the analysis. The analysis dataset consists of 285052 data points. The temporal 

resolution of the data is 1 minute. For the list of parameters used in our analyses, see Table 2. 

 

3.2 Ultraviolet (UV) index 

 

3.2.1 Observed data 

 

Ground-based measurements are obtained from 33 stations. The stations and data are the same 

as used for the CAMS radiation service UV index validation. The data has undergone quality 

checks to ensure good quality data. Figure 2 displays the locations of the stations on a map. 

Table 2 report the stations, their location coordinates and altitude. 



CAMEO  

 

D4.3 Single value radiation uncertainty patterns   9 

 
Figure 2. Map of UV station locations. 

 

3.2.1 Model data 

 

As the model data, we use the CAMS global atmospheric composition forecasts UV 

biologically effective dose. The dose is multiplied by 40 to obtain UV index (McKinlay, 1987). 

We use the time 00:00 for each day and lead time hours 0-23 to construct our hourly model 

dataset. We use data from years 2019-2022. The temporal resolution of the data we use is 1 

minute. We use linear interpolation to collocate the model data with observations both spatially 

and temporally. Due to relatively coarse model resolution, both in time and space, we have not 

carried out any smoothing or averaging of the data in the collocation. As input data for our 

correction model we use the The same CAMS radiation service expert mode input data as for 

the global radiation, with the only exception of the global horizontal irradiation was replaced 

with the CAMS model UV index. The total amount of collocated data points in our dataset is 

901796. 
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Table 3. List of UV stations with latitude, longitude, and elevation information. 

Station Latitude (°) Longitude (°) Elevation (m) 

Adelaide -34.92 138.62 10 

Alicesprings -23.8 133.9 550 

Bergen 60.38 5.33 40 

Betdagan 32 34.81 25 

Brisbane -27.45 153.03 20 

Canberra -35.31 149.2 580 

Chiangmai 18.78 98.98 312 

Christchurch -43.53 172.61 6 

Darwin -12.43 130.89 30 

Eilat 29.55 34.96 10 

Emerald -23.53 148.16 190 

Finse 60.58 7.57 1200 

Florence 43.82 11.2 50 

Goldcoast -28 153.37 10 

Invercargill -46.42 168.33 0 

Jerusalem 31.78 35.21 700 

Kingston -42.99 147.29 50 

Kise 60.78 10.82 140 

Kjeller 59.98 11.05 143 

Landvik 58.33 8.52 0 

Macquarieisland -54.5 158.94 0 

Melbourne -37.73 145.1 60 

Nakhonpathom 13.82 100.04 72 

Newcastle -32.9 151.72 20 

Osteras 59.92 10.75 150 

Perth -31.92 115.96 15 

Reading 51.44 -0.94 66 

Songkhla 7.2 100.6 15 

Sydney -34.04 151.1 20 

Townsville -19.33 146.76 10 

Trondheim 63.42 10.38 70 

Ubonratchathani 15.25 104.87 120 

Wellington -41.24 174.92 14 

 

 

 

 

 



CAMEO  

 

D4.3 Single value radiation uncertainty patterns   11 

4 Methods 

In this work, we have applied the post-process correction approach to CAMS surface global 

radiation and ultraviolet index data to minimize the biases in these data. The post-process 

correction models were trained using datasets consisting of various atmosphere and radiation 

variables and co-located model and observed radiation data. Following the post-process bias-

correction, we quantified the uncertainty in the radiation data using an ensemble technique and 

carefully analysed the factors affecting the biases and uncertainties in the CAMS radiation data. 

The methods used in our work are presented below. 

 

4.1 Post-process correction 

 

In machine-learning-based post-process correction approach, we correct for the simulation 

model error using a post-processing step. In the conventional, fully learned machine learning 

approach, a machine learning model is usually trained to directly predict the simulation model 

output. In our post-process correction, we take different approach: we train a machine learning 

algorithm (e.g deep neural network or tree-based regression algorithm) to predict the error in 

the simulation model output and use the error estimate to correct for the simulation results. 

This way we can combine the information both from the physics-based simulation model and 

data-driven machine learning. The post-process correction approach has been found to perform 

more stable and produce more accurate results than the conventional fully learned machine 

learning approach, for example, in generation of surrogate simulation models (Lipponen et al., 

2018) and in medical imaging, see for example Hamilton et al. (2019). Intuitively, the reason 

why our approach can be expected to improve over the conventional machine learning 

approach is that the model error is often less complicated function for machine learning 

regression than the physical process corresponding to the simulation model outputs. The key 

advantages of our approach over the conventional approaches are 1) improved accuracy, 2) 

possibility to post-correct existing (past) simulation-based datasets with no need to run the full 

simulations again, and possibly 3) need of less training data than with the conventional machine 

learning approaches. It should be noted that in case of updates to the original simulation model, 

the post-process correction model needs to be re-trained to correspond to the actual simulation 

model. 

 

For more technical description of the post-process correction approach and more use cases see, 

for example, Lipponen et al. (2021), Taskinen et al. (2022) or Lipponen et al. (2022). 

 

In this work, we will use an ensemble technique for the post-process correction by training an 

ensemble of post-process correction models consisting of 10 models trained with different 

random initializations. This provides us means to estimate and evaluate the uncertainties in the 

corrected simulation model outputs using the spread of the outputs of the ensemble members. 

For more technical description of the ensemble uncertainty modelling of the machine learning 

models see, for example, Lakshminarayanan et al. (2017) or Fort et al. (2019). 

 

4.2 SHapley Additive exPlanations (SHAP) analysis 

 

SHapley Additive exPlanations (SHAP) analysis is a method derived from cooperative game 

theory and is primarily used to interpret complex machine learning models. It assigns each 

feature or input variable an importance value for a particular prediction, offering a detailed 

insight into how each feature contributes, positively or negatively, to the target outcome. 
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Imagine a team of factors working together to predict the amount of radiation that reaches the 

Earth surface. Each factor, such as cloud cover, aerosol levels, or surface reflectance, plays a 

role like a team member in a cooperative game, where the prediction of radiation level is the 

total payout. SHAP values explain the payout (prediction) by fairly distributing the credit 

among all the contributing factors (features). 

 

For a more technical description of the SHAP analysis see, for example, Lundberg and Lee 

(2017). 

 

Example Let's consider a practical example in the context of our radiation simulation models: 

1. Cloud Cover: Suppose the model predicts a decrease in surface radiation levels. SHAP 

analysis could reveal that dense cloud cover is the most influential factor in this prediction, 

assigning it a high negative SHAP value. This indicates that the presence of clouds is 

significantly blocking the sunlight, leading to a lower simulation of radiation at the surface. 

2. Aerosol Information: Aerosols can either absorb or reflect sunlight. SHAP analysis might 

attribute a positive value to aerosol levels if the model predicts higher radiation at the surface, 

suggesting that in this specific case, aerosols are reflecting more sunlight back into space and 

thus reducing the amount of radiation reaching the ground. 

3. Surface Reflectance: Different surfaces (water, forest, urban areas) reflect and absorb 

sunlight differently. SHAP can provide insights into how much the surface type is contributing 

to the prediction. For instance, a high positive SHAP value for snow-covered areas would 

indicate that the high reflectivity of snow is contributing significantly to the prediction of lower 

radiation absorption at the surface level. 

 

In these examples, SHAP analysis not only quantifies the impact of each factor on the radiation 

levels but also offers a nuanced understanding of how different conditions interact to affect the 

model's predictions. This insight is invaluable for identifying and addressing the sources of 

error in radiation simulations, ultimately leading to more accurate and reliable forecasts. 

 

In our work, we applied the SHAP analysis to the post-process error correction model. 

Therefore, in our case, the SHAP analysis did not reveal the factors affecting the solar radiation 

quantities, that are relatively well known, but the factors that affect the errors in CAMS solar 

radiation quantities. This way our analysis will help revealing the strengths and weaknesses in 

the CAMS radiation models and in the future help improving the models. 

 

4.3 Machine-learning-based regression model eXtreme Gradient Boosting 

(XGBoost) 

 

In our work, we chose to use the XGBoost regression model, a decision driven by its 

robustness, efficiency, and accuracy in handling complex prediction tasks (Chen and Guestrin, 

2016). XGBoost stands for eXtreme Gradient Boosting, an advanced implementation of 

gradient boosted decision trees designed for speed and performance. This model operates by 

constructing an ensemble of trees, where each tree is built in a sequential manner, learning and 

improving from the mistakes of its predecessors. Essentially, each new tree attempts to correct 

the errors made by the ensemble of previously built trees. This iterative approach enables the 

model to focus on and learn from the most challenging cases in the dataset. 

 

The XGBoost model has capacity to handle a variety of data types, missing data, and various 

non-linear feature relationships, making it a versatile tool for predictive modeling. Its inherent 

regularization feature helps in reducing overfitting, making the model generalizable to new, 
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unseen data. Moreover, XGBoost's ability to perform parallel processing significantly cuts 

down on computational time, allowing for quicker model development and iteration. 

Pairing XGBoost with SHAP analysis leverages the strengths of both methodologies, resulting 

in a powerful synergy for our work. XGBoost's capability in modeling complex, non-linear 

relationships and interactions between variables lays a solid foundation for predictive accuracy. 

When SHAP analysis is applied to this model, it unpacks the 'black box', providing a clear, 

detailed, and quantifiable explanation of how each input feature influences the model's 

predictions. 

 

The use of tree-based models, particularly XGBoost, in SHAP analysis is highly regarded due 

to several intrinsic properties that make them suitable for explaining model predictions. SHAP 

values are based on game theory and provide a measure of the contribution of each feature to 

the prediction of a particular instance, taking into account all possible combinations of features. 

The tree structure of models like XGBoost allows for an efficient calculation of these values 

through the Tree SHAP algorithms that exploit the model's hierarchical decision paths to 

compute exact SHAP values in polynomial time. Computational efficiency and algorithms that 

produce exact SHAP values are significant advantages over other model types, such as neural 

networks, where the computation of SHAP values can be more computationally intensive and 

less precise. 

 

There are many advantages in this method combination. First, it enhances the interpretability 

of complex models, making the results more transparent and understandable. This is 

particularly beneficial in a research setting where explaining the 'why' behind predictions is 

just as crucial as the predictions themselves. Second, it aids in feature selection, helping to 

identify the most impactful factors that drive the model's outputs. This insight is invaluable for 

refining the model and focusing on the most relevant inputs. Finally, the use of XGBoost with 

SHAP analysis fosters trust and confidence in the model's predictions, as stakeholders can see 

and understand the rationale behind the model's decisions, making it a potent tool in our work 

on improving radiation simulation models. 

 

In our XGBoost model training, we use the Python XGBoost library. We tested over and 

extensive set of parameter combinations and found the following training parameters produced 

the best results and decided to use them in the training: 

• max_depth: 15 

• colsample_bytree: 0.3 

• learning_rate: 0.9 

The objective function to be minimized in the training was the mean squared error. 

 

5 Results 

5.1 Global radiation 

 

To advance our understanding and predictive capabilities regarding global and ultraviolet 

radiation at the surface level, we conducted a comprehensive investigation, ultimately aiming 

to refine the computational models currently in use in CAMS. We adopted a data-driven 

approach to analyze and interpret the factors that predominantly contribute to the inaccuracies 

and errors observed in existing radiation simulations and forecasts. 
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Our methodology involved applying the post-process correction approach to the CAMS global 

horizontal irradiation (GHI) data at the collocated station locations. The primary objective of 

this correction was to correct for the inherent biases within the GHI data, thereby aligning the 

computational outputs more closely with empirical observations and thus improving the 

reliability and precision of radiation forecasting and simulations. 

 

Figure 3 shows a comparative analysis of the GHI data — both with and without the 

implementation of post-process correction — against ground-based observations. In the 

comparison, we treat the ground-based observations as the accurate ground truth against which 

we compare the simulation model data. 

 

Figure 4 presents histograms that show the errors associated with the original CAMS GHI data 

and the data subjected to post-process correction. This visual representation highlights the 

discrepancies between the two datasets and provides an intuitive understanding of the error 

distribution, a crucial factor in comprehending the overall impact of our correction 

methodology. 

 

Figure 5 presents both the CAMS GHI and the post-process corrected GHI across various 

binned GHI ranges in a more granulated examination of the error distribution. This detailed 

analysis highlights the consistency and reliability of the post-process correction across a 

spectrum of conditions, reaffirming the robustness of our approach. 

 

Our findings reveal an improvement in the post-process corrected data. Notably, the post-

process correction method slightly reduced the overall GHI bias even though in some size bins 

the correction resulted in slightly increased bias. Moreover, a marked reduction in the error 

standard deviation was observed, underscoring our approach's effectiveness in enhancing the 

radiation data's precision. Interestingly, our findings also highlighted that the improvements by 

the post-process correction were not confined to specific GHI ranges; rather, the benefits were 

uniformly distributed, affirming the correction method's applicability across different radiation 

intensities. 

 

From a quantitative standpoint, the GHI error standard deviation — a simplified yet insightful 

uncertainty estimate — exhibited a noteworthy decrease in the post-corrected data. 

Specifically, in the post-process corrected GHI data, the standard deviation ranged between 65 

and 103 W/m2, significantly improving from the 84 to 145 W/m2 range observed in the 

uncorrected GHI data. This quantifiable reduction in standard deviation signifies a substantial 

enhancement in data accuracy. It reinforces our correction methodology's potential to serve as 

a cornerstone in future radiation modelling and forecasting. 

 

Tables 4-9 show the accuracy metrics station-by-station for both the 1-minute and 1-hour 

averaged data, both in terms absolute and relative values and both with and without the post-

process correction. 
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Figure 3. Global horizontal irradiation (GHI). Top: CAMS model GHI as function of observed GHI. 

Bottom: Post-process corrected CAMS GHI as function of observed GHI. 
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Figure 4. Error histograms for the CAMS (top) and post-process corrected CAMS (bottom) global 

horizontal irradiation (GHI) at surface level. 
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Figure 5. Global horizontal irradiation (GHI) error distributions for the uncorrected (blue) and post-

process corrected (red) CAMS GHI for different GHI ranges. The metrics on the top of the figure show 

the mean and standard deviation (std) of the error. 
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Figure 6. Absolute global horizontal irradiation (GHI) error as function of expected GHI uncertainty 

computed as the ensemble member spread. The GHI data was binned to 10 equally populated bins and 

the diamonds indicate different GHI bins. The lightest tone corresponds to 38th percentile (0.5 standard 

deviations), the middle tone corresponds to 68th percentile (1 standard deviation), and the darkest to the 

95th percentile (2 standard deviations). The dashed lines show the theoretical ideal values for the 

uncertainties. The lines below the corresponding dashed lines indicate overestimated uncertainty 

estimates and the lines above the corresponding dashed lines indicate underestimated uncertainty 

estimates. 

 

Building on the foundation of our post-process correction work, we adopted an ensemble 

approach and generated uncertainty estimates for the post-process corrected GHI. This step 

enhanced and facilitated a more comprehensive understanding of the GHI data reliability and 

precision. 

 

Figure 6 shows the relationship between the absolute GHI error and the expected GHI 

uncertainty in a similar manner of the approach utilized by Sayer et al. (2020) for evaluating 

uncertainty estimates in satellite-based aerosol data. An observation from Figure 6 reveals a 

pattern in the behaviour of the ensemble-based uncertainty estimates. At lower GHI levels, a 

trend of overestimation in uncertainty estimates became apparent. Conversely, at higher GHI 

levels, the trend shifted towards underestimating uncertainty. Underestimating uncertainties 

carry the risk of unwarranted confidence in the data, potentially leading users to place excessive 

trust in the values, especially in scenarios where precision is essential. However, when viewed 

in entirety, the ensemble-based uncertainty estimates are balanced, aligning with acceptable 

standards. 

 

Figures 7-10 show the ensemble-based uncertainty estimates in relation to all model input 

parameters. This comprehensive examination was designed to reveal potential correlations, or 

the lack thereof, between the levels of uncertainty and the post-process correction model's input 

parameters. The investigation did not reveal any significant correlations between the model 

inputs and estimated uncertainty levels. 
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Figure 7. Uncertainty estimates for global horizontal irradiation (GHI) as function model input 

parameters. Top left: TOA global horizontal irradiation. Top right: Cloud modification factor. Middle 

left: GHI. Middle right: Solar zenith angle. Bottom left: Summer/winter split. Bottom right: Total column 

ozone. 
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Figure 8. Uncertainty estimates for global horizontal irradiation (GHI) as function model input 

parameters. Top left: Total column water vapor. Top right: Black carbon aerosol optical depth. Middle 

left: Dust aerosol optical depth. Middle right: Sea salt aerosol optical depth. Bottom left: Organic carbon 

aerosol optical depth. Bottom right: Sulphate aerosol optical depth. 
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Figure 9. Uncertainty estimates for global horizontal irradiation (GHI) as function model input 

parameters. Top left: Nitrate aerosol optical depth. Top right: Ammonium aerosol optical depth. Middle 

left: Secondary organic aerosol optical depth. Middle right: Snow probability. Bottom left: Surface 

reflectance BRDF parameter fiso. Bottom right: Surface reflectance BRDF parameter fvol. 
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Figure 10. Uncertainty estimates for global horizontal irradiation (GHI) as function model input 

parameters. Top left: Surface reflectance BRDF parameter fgeo. Top right: Surface albedo. Middle left: 

Cloud optical depth. Middle right: Cloud coverage. Bottom left: Cloud type. 
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In our analysis of the factors influencing the accuracy and uncertainties of the CAMS GHI 

data, we embarked on a comprehensive SHAP (SHapley Additive exPlanations) analysis of the 

post-process correction model. This analytical approach was employed to uncover the most 

important features that play the most significant roles in the bias observed in the CAMS GHI 

data. 

 

Figure 11 shows a result of our detailed SHAP analysis, presenting a SHAP diagram for a 

single ensemble member correction model. This diagram provides a comprehensive view of 

the SHAP values corresponding to the entire GHI dataset, offering a broad overview of the 

impact of various features on the post-process correction model's predictions. 

 

In this model, cloud coverage emerged as the most significant feature influencing the CAMS 

model error. Our SHAP analysis showed that larger-than-average cloud coverage almost 

always coincides with positive SHAP values. This correlation suggests a tendency towards 

underestimating CAMS radiation data under such conditions. Conversely, smaller-than-

average cloud coverage frequently yields negative SHAP values, indicating a probable 

overestimation of CAMS radiation data. These findings underscore the critical impact of cloud 

coverage on the model's accuracy in predicting GHI, highlighting the need for precise cloud 

representation in atmospheric models. The study also uncovered a similar pattern with another 

cloud-related variable: cloud optical depth. Large cloud optical depths were consistently 

associated with positive SHAP values, while small optical depths correlated with negative 

SHAP values. Most SHAP values were relatively close to zero when examining variables 

unrelated to clouds. This observation indicates their relatively minor importance in adjusting 

the CAMS model's predictions or at least stresses the more considerable importance of the 

cloud-related variables in contributing to the CAMS model error. 

 

Figure 12 shows the SHAP values for a single model and single prediction. This detailed 

breakdown explains how each input value contributes explicitly to the prediction in this 

particular instance, offering a detailed perspective on the model's decision-making process. 

 

In Figures 13-16, the mean SHAP values, representative of the entire ensemble of models, are 

catalogued in the order of their significance. These figures highlight the model's input features 

and their effect on the model's predictions. 

 

The cloud modification factor is the most significant input variable affecting the post-process 

correction. The relationship between the cloud modification factor and SHAP value is obvious. 

The SHAP values are positive for smaller cloud modification factor values, showing a positive 

impact on the GHI predictions. However, as the cloud modification factor grows to values close 

to 1, the SHAP values have mostly negative values, mainly between 0 and -80 W/m2. This 

trend explains a critical insight: larger cloud modification factors are likely to be linked to the 

underestimation of GHI. 

 

The GHI value itself was identified as the second most critical input variable. A pattern 

emerged here: smaller GHI values (below 150 W/m2) are primarily associated with positive 

SHAP values (10-40 W/m2), indicating a tendency towards GHI underestimation. In contrast, 

larger GHI values (above 750 W/m2) are commonly linked with negative SHAP values (-20 to 

0 W/m2), signalling GHI overestimation. 
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The third significant factor was the cloud optical thickness. Large cloud optical thickness 

values (>50) were clearly associated with large SHAP values mostly between 0-70 indicating 

GHI underestimation. 

 

Further down the list of significance, the cloud type emerged as the fourth most significant 

variable, with cloud type 5 — low-level clouds — distinguished by its prominently positive 

SHAP values ranging from 0 to 50 W/m2. This positive skew indicates that low-level clouds 

are another substantial factor contributing to the overestimation of GHI values in the CAMS 

dataset. 

 

The SHAP analysis did not reveal any other significant input factors. Almost all SHAP values 

associated with the other input variables remained modestly confined within the -20 to 20 W/m2 

range. This finding underscores a lack of significant correlation between these additional input 

variables and the GHI error SHAP values. This refined understanding by the SHAP analysis 

enables more targeted and effective enhancements to the post-process correction and CAMS 

radiation models, leading to more accurate and reliable GHI predictions. 
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Figure 11. SHAP diagram for the global horizontal irradiation (GHI) error (GHIobs - GHICAMS). 
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Figure 12. SHAP values corresponding to a single prediction by the post-process GHI error correction 

model. 
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Figure 13. SHAP value for global horizontal irradiation (GHI) as function model input parameters. Top 

left: Cloud modification factor. Top right: GHI. Middle left: Cloud optical depth. Middle right: Cloud 

type. Bottom left: Surface reflectance BRDF parameter fiso. Bottom right: Total column water vapor. 
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Figure 14. SHAP value for global horizontal irradiation (GHI) as function model input parameters. Top 

left: Surface reflectance BRDF parameter fgeo. Top right:Surface albedo. Middle left: Ammonium 

aerosol optical depth. Middle right: Cloud coverage. Bottom left: Solar zenith angle. Bottom right: TOA 

GHI. 
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Figure 15. SHAP value for global horizontal irradiation (GHI) as function model input parameters. Top 

left: Sea salt aerosol optical depth. Top right: Total column ozone. Middle left: Black carbon aerosol 

optical depth. Middle right: Dust aerosol optical depth. Bottom left: Organic carbon aerosol optical 

depth. Bottom right: Summer/winter split. 
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Figure 16. SHAP value for global horizontal irradiation (GHI) as function model input parameters. Top 

left: Snow probability. Top right: Sulphate aerosol optical depth. Middle left: Nitrate aerosol optical 

depth. Middle right: Surface reflectance BRDF parameter fvol. Bottom left: Secondary organic aerosol 

optical depth. 
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5.2 UV index 

 

Next, we extended the methodology successfully employed in the analysis of GHI to improve 

the CAMS ultraviolet index (UVI) forecast data. We adopted the post-process correction 

approach, previously applied to GHI data, to UVI data to correct biases and match the forecast 

data more closely with empirical observations. 

 

Figure 17 compares the UVI data before and after applying post-process correction against the 

ground-based observations. These observations, recognized as the accurate ground truth, 

provide a robust benchmark against which the efficacy of our correction measures can be 

evaluated. 

 

Figure 18 presents histograms detailing the error distributions associated with the original 

CAMS UVI data and the data subjected to post-process correction. This graphical 

representation provides an intuitive understanding of the error distribution, highlighting the 

differences between the two datasets and the impact of our post-process correction 

methodology. 

 

Figure 19 illustrates the error distributions for both the original and the post-process corrected 

UVI data across a spectrum of binned UVI ranges. This granular analysis underscores the 

consistency of the post-process correction across different levels of UVI and shows the 

method's robustness and applicability. 

 

The overall finding in all the results is the enhanced precision and reliability of the UVI data. 

The post-process correction method reduced the bias in UVI data, as evidenced by the average 

reduction across various measurements. Furthermore, a notable decrease in the error standard 

deviation was observed, highlighting the method's effectiveness in enhancing the precision of 

the UVI data. The improvement in standard deviations was not confined to specific UVI ranges, 

and the benefits of post-process correction were uniformly distributed. 

 

The standard deviation showed a significant improvement in the post-process corrected data 

over the original CAMS UVI forecast. The post-process corrected UVI data exhibited a 

standard deviation ranging between 0.4 and 1.4, marking an enhancement compared to the 0.6 

to 2.0 range observed in the uncorrected UVI data. 

 

Tables 10-12 show both the relative and absolute accuracy metrics station-by-station data both 

with and without the post-process correction. 
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Figure 17. UV index (UVI). Top: CAMS forecast UVI as function of observed UVI. Bottom: Post-process 

corrected CAMS forecast UVI as function of observed UVI. 



CAMEO  

 

D4.3 Single value radiation uncertainty patterns   33 

 
Figure 18. Error histograms for the CAMS (top) and post-process corrected CAMS (bottom) ultraviolet 

index (UVI) at surface level. 
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Figure 19. Ultraviolet index (UVI) error distributions for the uncorrected (blue) and post-process 

corrected (red) CAMS UVI for different UVI ranges. The metrics on the top of the figure show the mean 

and standard deviation (std) of the error. 

 

Building upon the methodologies applied to GHI, our work further evolved to encompass the 

refinement of UVI forecast data through an ensemble-based post-process correction approach. 

This strategy was needed to generate the uncertainty estimates for the post-process corrected 

UVI, following the approach previously employed with GHI data. 

 

Figure 20 shows the relationship between the absolute UVI error and the expected UVI 

uncertainty. The analysis revealed a pattern reminiscent of our findings with GHI. The 

ensemble-based uncertainty estimates for UVI tended to be overestimated at lower UVI levels, 

while a trend of underestimation was observed at higher UVI levels. Despite these nuances at 

the extremes, on average, the ensemble-based uncertainty estimates were within acceptable 

bounds, suggesting a robust overall performance of our correction and uncertainty estimation 

methodology. 

 

We further extended our analysis to investigate how the uncertainty estimates behave in 

relation to all the model input parameters. Figures 21-24 describe the UVI uncertainty estimates 

as a function of the post-process correction model's input parameters. Our analysis showed 

some correlations between the input variables and the uncertainty estimates, revealing patterns 

that were not as pronounced in our GHI analysis. The top-of-atmosphere (TOA) global 

horizontal irradiation positively correlated with the ensemble-based UVI uncertainty estimate, 

indicating a direct relationship between increased irradiation and elevated uncertainty levels. 
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We made an observation regarding the cloud optical depth. Specifically, cloud optical depth 

values exceeding 100 were consistently linked with larger-than-average uncertainty estimates. 

This finding highlights the significant influence of dense cloud cover on the uncertainty of UVI 

forecasts, marking it as a critical factor in the predictability of ultraviolet radiation levels. Also 

there was a positive correlation between the UVI uncertainty and total column water wapor. 

 

These insights, derived from our detailed analysis, enhanced our understanding of the 

uncertainties in UVI forecasting and gave us ways to refine our post-process correction model 

further. By identifying and quantifying the relationships between input variables and forecast 

uncertainty, we are better positioned to develop more accurate and reliable predictive models 

for ultraviolet radiation. 

 

Figure 20. Absolute ultraviolet index (UVI) error as function of expected UVI uncertainty computed as 

the ensemble member spread. The UVI data was binned to 10 equally populated bins and the diamonds 

indicate different UVI bins. The lightest tone corresponds to 38th percentile (0.5 standard deviations), the 

middle tone corresponds to 68th percentile (1 standard deviation), and the darkest to the 95th percentile (2 

standard deviations). The dashed lines show the theoretical ideal values for the uncertainties. The lines 

below the corresponding dashed lines indicate overestimated uncertainty estimates and the lines above 

the corresponding dashed lines indicate underestimated uncertainty estimates. 
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Figure 21. Uncertainty estimates for ultraviolet index (UVI) as function model input parameters. Top left: 

TOA global horizontal irradiation. Top right: Cloud modification factor. Middle left: UVI. Middle right: 

Solar zenith angle. Bottom left: Summer/winter split. Bottom right: Total column ozone. 
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Figure 22. Uncertainty estimates for ultraviolet index (UVI) as function model input parameters. Top left: 

Total column water vapor. Top right: Black carbon aerosol optical depth. Middle left: Dust aerosol 

optical depth. Middle right: Sea salt aerosol optical depth. Bottom left: Organic carbon aerosol optical 

depth. Bottom right: Sulphate aerosol optical depth. 
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Figure 23. Uncertainty estimates for ultraviolet index (UVI) as function model input parameters. Top left: 

Nitrate aerosol optical depth. Top right: Ammonium aerosol optical depth. Middle left: Secondary 

organic aerosol optical depth. Middle right: Snow probability. Bottom left: Surface reflectance BRDF 

parameter fiso. Bottom right: Surface reflectance BRDF parameter fvol. 
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Figure 24. Uncertainty estimates for ultraviolet index (UVI) as function model input parameters. Top left: 

Surface reflectance BRDF parameter fgeo. Top right: Surface albedo. Middle left: Cloud optical depth. 

Middle right: Cloud coverage. Bottom left: Cloud type. 
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Similarly, as for the GHI, we employed the SHAP (SHapley Additive exPlanations) analysis 

to the UVI post-process correction model. This approach was harnessed to unveil the key 

features that predominantly influence the bias observed in the CAMS UVI data. 

 

Figure 25 presents the SHAP diagram for a single ensemble member UVI post-process 

correction model. This diagram offers a comprehensive encapsulation of the SHAP values 

across the entire UVI dataset, providing a view of the impact of various features on the UVI 

correction model's predictions. 

 

Figures 26-29 show the mean SHAP values corresponding to the full ensemble of models, 

arranged in the order of their significance. This ordered presentation highlights the hierarchy 

of influence among the input variables. Also, it facilitates a clear and structured understanding 

of the input parameter's individual and collective impact on the model's output. 

 

The UVI itself emerged as the most influential factor affecting the post-process correction. A 

nuanced pattern was observed in the SHAP values corresponding to UVI: for lower UVI values 

(below 2.5), the SHAP values were predominantly positive, indicating a tendency for these 

values to increase the CAMS UVI output from its original estimate, pointing towards an 

underestimation by the model. Conversely, for higher UVI values (above 4), the SHAP values 

tended to be negative (mostly between -0.25 and -0.75), suggesting that the CAMS UVI is 

overestimated in these cases. 

 

Following UVI, the top-of-atmosphere (TOA) GHI was the second most significant input 

variable. The relationship between the TOA GHI and SHAP values revealed that small TOA 

GHI values were associated with negative SHAP values (ranging between -0.25 and 0). 

 

The cloud optical depth emerged as the third most critical input variable. Cloud optical depth 

values larger than 25 correspond to negative SHAP values ranging between -0.1 and -1.0 

indicating correction to the negative direction and meaning possible overestimation of UVI. 

 

We identified the solar zenith angle as the fourth most significant input variable. The SHAP 

analysis unveiled a negative correlation with the solar zenith angle, delineating a clear trend: 

smaller solar zenith angle values generally corresponded to positive SHAP values. In 

comparison, larger solar zenith angle values were typically associated with negative SHAP 

values (ranging between -0.2 and 0). This finding underscores the critical influence of the sun's 

elevation on the UVI predictions. 
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Figure 25. SHAP diagram for the ultraviolet index (UVI) error (UVIobs - UVICAMS). 
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Figure 26. SHAP value for ultraviolet index (UVI) as function model input parameters. Top left: UVI. 

Top right: TOA global horizontal irradiation. Middle left: Cloud optical depth. Middle right: Solar zenith 

angle. Bottom left: Surface reflectance BRDF parameter fiso. Bottom right: Total column water vapor. 
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Figure 27. SHAP value for ultraviolet index (UVI) as function model input parameters. Top left: Sea salt 

aerosol optical depth. Top right: Surface reflectance BRDF parameter fgeo. Middle left: Cloud type. 

Middle right: Dust aerosol optical depth. Bottom left: Surface albedo. Bottom right: Cloud modification 

factor. 
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Figure 28. SHAP value for ultraviolet index (UVI) as function model input parameters. Top left: Cloud 

coverage.. Top right: Sulphate aerosol optical depth. Middle left: Black carbon aerosol optical depth. 

Middle right: Organic carbon aerosol optical depth. Bottom left: Ammonium aerosol optical depth. 

Bottom right: Total column ozone. 
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Figure 29. SHAP value for ultraviolet index (UVI) as function model input parameters. Top left: Surface 

reflectance BRDF parameter fvol. Top right: Summer/winter split. Middle left: Nitrate aerosol optical 

depth. Middle right: Snow probability. Bottom left: Secondary organic aerosol optical depth. 
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6 Conclusion 

Our work with global and ultraviolet radiation simulation and forecast models has resulted in 

findings and methodological advancements that promise to enhance the accuracy, reliability 

and uncertainty quantification of radiation simulation and forecasting. To address the current 

inaccuracies in CAMS radiation products, we took the data-driven approach to analyse the 

factors contributing to the discrepancies between CAMS model data and ground-based 

observations. We took the post-process correction approach to correct the simulation outputs 

to match actual observations more closely. 

 

Our methodology revolved around the post-process correction of global horizontal irradiation 

(GHI) and ultraviolet index (UVI) data. By applying machine learning techniques, specifically 

the XGBoost algorithm, we managed to identify and rectify the biases embedded within the 

CAMS simulation data. The synergy of XGBoost with SHAP (SHapley Additive exPlanations) 

analysis provided a transparent and quantifiable insight into how each input variable influenced 

the post-process correction model's predictions. Our approach enhanced the interpretability of 

complex models and facilitated a feature selection process. 

 

A notable aspect of our work was the detailed analysis of error distribution in the post-process 

corrected data. The histograms and comparative analyses we conducted revealed an 

improvement in precision, as evidenced by the reduction in error standard deviation across 

various ranges of GHI and UVI. The results showed the efficacy of our post-process correction 

approach, which proved its merit not only in specific conditions but across a broad spectrum 

of radiation intensities. 

 

Recognising the significance of uncertainty quantification in computational models, we 

explored a data-driven approach to assess the reliability of computed radiation data. We 

generated and evaluated uncertainty estimates using an ensemble technique, providing an 

understanding of the data's precision. This method also illuminated patterns in uncertainty 

distribution, offering valuable insights into the model's behaviour across different radiation 

intensity levels. 

 

We leveraged the SHAP analysis to analyse the factors influencing the accuracy of the CAMS 

GHI and UVI data. This technique gave us information about the most significant features 

impacting the model's predictions. For instance, we uncovered that the cloud optical depth and 

cloud type were paramount in influencing the GHI predictions. At the same time, the UVI and 

top-of-atmosphere GHI emerged as critical factors in UVI post-process correction. These 

revelations deepened our understanding of the model's inner workings and guided us in refining 

our approach for even more accurate and reliable predictions. 

 

Our work led to an increased understanding of the computational models for global and 

ultraviolet radiation and the information on the most important variables steering the model's 

accuracy. The methodologies developed, and insights obtained from this project will serve as 

a cornerstone for further advancements in radiation model development, ultimately benefiting 

many stakeholders, from policymakers to the general public seeking reliable environmental 

information. 
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8 Appendix: Global horizontal irradiation and UV-index accuracy 

metrics by station 

 

Table 4. Global horizontal irradiation 1-minute data accuracy metrics mean bias, root-mean-

squared-error (RMSE) and mean absolute error (MAE) for each station. The bold font 

indicates better performance. See the Appendix for the error metrics definitions. 

 Mean bias (W / m2) RMSE (W / m2) MAE (W / m2) 

Station CAMS corrected CAMS corrected CAMS corrected 

BSRN_BUD 5.0 -1.5 52.3 47.8 87.0 78.6 

BSRN_CAB -2.9 -3.0 53.8 47.7 81.8 73.7 

BSRN_CNR 10.8 3.2 56.7 49.0 88.4 77.5 

BSRN_FLO 4.1 0.8 72.1 64.6 119.2 101.3 

BSRN_GOB 9.8 0.3 29.3 18.2 54.8 42.3 

BSRN_INO 2.0 -0.5 49.2 45.6 84.3 77.7 

BSRN_IZA -23.8 -7.1 65.1 36.9 131.9 70.9 

BSRN_LIN -4.5 0.7 60.5 53.9 92.5 83.3 

BSRN_PAL -4.6 -3.8 57.4 51.7 91.4 82.5 

BSRN_PAY 7.1 2.7 59.4 48.6 95.6 78.6 

BSRN_RUN -26.6 -2.9 107.9 81.0 172.6 122.7 

BSRN_SON -24.5 -4.2 129.5 74.2 189.0 111.6 

SAURAN_CSIR 15.4 2.9 68.4 59.4 116.9 101.9 

SAURAN_CUT -4.1 -2.6 62.5 56.0 114.6 100.8 

SAURAN_NMU -10.8 -1.2 64.2 55.3 97.6 84.8 

SAURAN_SUN 8.2 -1.0 52.5 43.4 93.6 76.9 

SAURAN_UPR 19.2 0.6 61.0 50.3 99.4 88.5 

enerMENA_ERF 28.2 1.7 59.3 31.7 84.0 58.5 

enerMENA_JOR -19.5 -1.2 33.0 20.4 63.5 44.3 

enerMENA_TN -3.1 -0.7 43.2 31.5 74.6 57.9 

enerMENA_ZAG 23.1 0.7 53.3 31.1 81.8 60.1 
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Table 5. Global horizontal irradiation 1-minute data relative (pointwise) accuracy metrics 

mean bias, root-mean-squared-error (RMSE) and mean absolute error (MAE) for each 

station. The bold font indicates better performance. See the Appendix for the error metrics 

definitions. 

 Relative bias (%) Relative RMSE (%) Relative MAE (%) 

Station CAMS corrected CAMS corrected CAMS corrected 

BSRN_BUD 13.4 11.2 28.7 24.5 72.0 60.5 

BSRN_CAB 9.6 10.3 32.6 26.9 63.8 53.7 

BSRN_CNR 17.7 15.9 34.0 28.7 157.4 214.1 

BSRN_FLO 16.8 20.2 38.6 36.7 109.4 109.9 

BSRN_GOB 2.1 1.9 7.5 5.6 22.7 25.7 

BSRN_INO 12.1 12.3 28.4 24.5 77.3 69.0 

BSRN_IZA -0.6 1.6 14.2 9.3 33.2 25.1 

BSRN_LIN 9.4 14.7 35.1 30.7 69.5 63.4 

BSRN_PAL 11.7 12.7 32.0 28.2 86.9 85.3 

BSRN_PAY 18.1 14.9 36.7 28.3 85.4 69.7 

BSRN_RUN 13.1 13.9 37.2 29.2 87.9 69.4 

BSRN_SON 12.0 13.2 51.0 30.7 120.5 90.9 

SAURAN_CSIR 19.3 13.5 32.5 25.0 166.2 84.9 

SAURAN_CUT 13.0 15.8 26.7 26.4 119.8 157.4 

SAURAN_NMU 3.1 9.4 24.5 23.0 46.9 53.8 

SAURAN_SUN 9.8 7.6 21.1 17.9 71.6 54.8 

SAURAN_UPR 16.3 11.7 27.7 22.5 128.0 103.1 

enerMENA_ERF 11.5 11.8 19.4 18.4 290.0 680.1 

enerMENA_JOR -2.7 2.0 8.2 6.4 21.3 34.6 

enerMENA_TN -0.6 3.3 12.6 10.3 26.7 29.0 

enerMENA_ZAG 6.7 2.9 15.3 9.7 58.2 30.7 
 

 

 

 

 

 

Table 6. Global horizontal irradiation 1-minute data relative (average, avg) accuracy metrics 

mean bias, root-mean-squared-error (RMSE) and mean absolute error (MAE) for each 

station. The bold font indicates better performance. See the Appendix for the error metrics 

definitions. 

 Relative biasavg (%) Relative RMSEavg (%) Relative MAEavg (%) 

Station CAMS corrected CAMS corrected CAMS corrected 

BSRN_BUD 1.3 -0.4 23.1 20.8 13.9 12.7 

BSRN_CAB -1.0 -1.0 27.1 24.5 17.8 15.8 

BSRN_CNR 2.8 0.8 22.8 20.0 14.6 12.6 

BSRN_FLO 1.0 0.2 30.5 25.9 18.4 16.5 

BSRN_GOB 1.5 0.0 8.7 6.7 4.6 2.9 
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BSRN_INO 0.5 -0.1 20.3 18.7 11.9 11.0 

BSRN_IZA -3.8 -1.2 21.3 11.4 10.5 6.0 

BSRN_LIN -1.5 0.2 30.5 27.5 19.9 17.8 

BSRN_PAL -1.4 -1.1 26.9 24.3 16.9 15.2 

BSRN_PAY 2.0 0.8 26.7 21.9 16.6 13.6 

BSRN_RUN -5.2 -0.6 34.0 24.2 21.3 16.0 

BSRN_SON -6.3 -1.1 48.7 28.8 33.4 19.1 

SAURAN_CSIR 3.0 0.6 23.0 20.1 13.5 11.7 

SAURAN_CUT -0.7 -0.4 20.0 17.6 10.9 9.8 

SAURAN_NMU -2.4 -0.3 21.7 18.9 14.3 12.3 

SAURAN_SUN 1.6 -0.2 18.4 15.1 10.4 8.5 

SAURAN_UPR 3.9 0.1 20.1 17.9 12.4 10.2 

enerMENA_ERF 5.4 0.3 16.0 11.1 11.3 6.0 

enerMENA_JOR -3.2 -0.2 10.2 7.1 5.3 3.3 

enerMENA_TN -0.6 -0.1 14.1 11.0 8.2 6.0 

enerMENA_ZAG 4.2 0.1 15.0 11.1 9.8 5.7 
 

 

Table 7. Global horizontal irradiation 1-hour data accuracy metrics mean bias, root-mean-

squared-error (RMSE) and mean absolute error (MAE) for each station. The bold font 

indicates better performance. See the Appendix for the error metrics definitions. 

 Mean bias (W / m2) RMSE (W / m2) MAE (W / m2) 

Station CAMS corrected CAMS corrected CAMS corrected 

BSRN_BUD 5.1 -1.2 41.7 35.4 66.9 57.2 

BSRN_CAB -2.6 -3.0 40.9 34.4 61.1 52.1 

BSRN_CNR 11.6 3.6 45.8 36.4 70.2 57.3 

BSRN_FLO 4.3 1.4 59.0 48.8 96.0 76.0 

BSRN_GOB 9.1 0.1 26.3 14.2 45.2 31.4 

BSRN_INO 2.4 -0.4 38.4 33.4 61.9 54.7 

BSRN_IZA -22.0 -6.0 58.1 28.7 118.1 53.4 

BSRN_LIN -4.4 0.6 46.7 39.4 69.9 59.7 

BSRN_PAL -3.5 -3.4 43.6 37.7 67.7 59.0 

BSRN_PAY 6.9 2.5 47.9 36.3 75.9 57.9 

BSRN_RUN -23.4 -1.4 92.7 62.0 146.5 92.5 

BSRN_SON -23.6 -2.8 117.8 59.7 171.5 89.0 

SAURAN_CSIR 17.2 4.4 55.5 44.3 96.7 77.5 

SAURAN_CUT -1.7 -1.6 50.4 42.3 93.7 75.8 

SAURAN_NMU -7.6 0.1 52.4 43.5 78.4 65.8 

SAURAN_SUN 8.2 -1.3 44.4 33.4 77.1 58.3 

SAURAN_UPR 19.4 1.0 47.7 35.3 73.9 60.6 

enerMENA_ERF 26.4 1.5 49.7 23.4 67.2 41.5 

enerMENA_JOR -18.8 -0.9 29.3 16.0 52.4 32.6 

enerMENA_TN -3.5 -0.7 36.0 23.1 57.2 40.5 
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enerMENA_ZAG 21.0 0.5 45.1 23.4 65.3 43.7 

       
 

Table 8. Global horizontal irradiation 1-hour data relative (pointwise) accuracy metrics mean 

bias, root-mean-squared-error (RMSE) and mean absolute error (MAE) for each station. The 

bold font indicates better performance. See the Appendix for the error metrics definitions. 

 Relative bias (%) Relative RMSE (%) Relative MAE (%) 

Station CAMS corrected CAMS corrected CAMS corrected 

BSRN_BUD 11.7 9.1 24.8 19.9 65.3 55.3 

BSRN_CAB 7.2 7.0 26.4 20.6 49.6 39.4 

BSRN_CNR 16.2 11.8 29.9 22.0 126.2 74.6 

BSRN_FLO 13.5 16.5 33.0 29.9 81.6 85.9 

BSRN_GOB 2.0 1.4 7.0 4.6 21.9 16.1 

BSRN_INO 11.0 9.5 25.1 19.6 73.9 49.1 

BSRN_IZA -0.6 1.2 13.2 7.7 29.7 20.9 

BSRN_LIN 6.2 10.8 28.8 23.8 54.6 46.0 

BSRN_PAL 9.6 9.6 26.2 22.2 70.7 75.6 

BSRN_PAY 16.9 12.0 32.2 22.8 80.9 53.6 

BSRN_RUN 12.4 11.8 34.2 24.3 73.1 56.0 

BSRN_SON 9.2 10.5 45.8 24.7 85.2 55.6 

SAURAN_CSIR 15.1 10.3 25.9 19.2 97.8 58.6 

SAURAN_CUT 10.2 11.1 21.6 20.0 81.0 87.4 

SAURAN_NMU 2.9 7.6 20.8 18.8 38.8 41.0 

SAURAN_SUN 8.4 5.7 17.9 14.2 55.1 43.6 

SAURAN_UPR 12.4 7.9 21.4 16.3 84.0 80.6 

enerMENA_ERF 15.3 22.5 22.0 27.9 473.4 1115.8 

enerMENA_JOR -3.2 1.3 7.4 5.1 17.2 17.5 

enerMENA_TN -1.3 2.7 11.1 8.4 23.9 30.9 

enerMENA_ZAG 5.3 1.8 13.2 7.7 47.8 22.8 
 

 

Table 9. Global horizontal irradiation 1-hour data relative (average, avg) accuracy metrics 

mean bias, root-mean-squared-error (RMSE) and mean absolute error (MAE) for each 

station. The bold font indicates better performance. See the Appendix for the error metrics 

definitions. 

 Relative biasavg (%) Relative RMSEavg (%) Relative MAEavg (%) 

Station CAMS corrected CAMS corrected CAMS corrected 

BSRN_BUD 1.4 -0.3 18.5 15.8 11.5 9.8 

BSRN_CAB -0.9 -1.0 21.0 17.9 14.1 11.8 

BSRN_CNR 3.1 1.0 18.8 15.4 12.3 9.8 

BSRN_FLO 1.1 0.4 25.6 20.2 15.7 13.0 

BSRN_GOB 1.5 0.0 7.4 5.1 4.3 2.3 

BSRN_INO 0.6 -0.1 15.5 13.7 9.6 8.4 

BSRN_IZA -3.7 -1.0 19.7 8.9 9.7 4.8 
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BSRN_LIN -1.5 0.2 24.0 20.5 16.0 13.5 

BSRN_PAL -1.1 -1.0 20.7 18.1 13.4 11.6 

BSRN_PAY 2.0 0.7 22.1 16.9 13.9 10.6 

BSRN_RUN -4.8 -0.3 30.3 19.1 19.2 12.8 

BSRN_SON -6.3 -0.8 45.6 23.7 31.3 15.9 

SAURAN_CSIR 3.5 0.9 19.8 15.9 11.4 9.1 

SAURAN_CUT -0.3 -0.3 17.0 13.7 9.1 7.7 

SAURAN_NMU -1.8 0.0 18.3 15.4 12.2 10.1 

SAURAN_SUN 1.7 -0.3 15.6 11.8 9.0 6.8 

SAURAN_UPR 4.1 0.2 15.6 12.8 10.1 7.4 

enerMENA_ERF 5.2 0.3 13.3 8.2 9.8 4.6 

enerMENA_JOR -3.2 -0.1 8.8 5.5 4.9 2.7 

enerMENA_TN -0.7 -0.1 11.2 8.0 7.1 4.5 

enerMENA_ZAG 4.0 0.1 12.6 8.4 8.7 4.5 
 

 

Table 10. UV index 1-minute data accuracy metrics mean bias, root-mean-squared-error 

(RMSE) and mean absolute error (MAE) for each station. The bold font indicates better 

performance. See the Appendix for the error metrics definitions. 

 Bias RMSE MAE 

Station CAMS corrected CAMS corrected CAMS corrected 

Adelaide 0.2 0.0 0.6 0.4 1.0 0.7 

Alicesprings 0.6 0.0 0.8 0.5 1.3 0.9 

Bergen 0.0 0.0 0.3 0.2 0.5 0.4 

Betdagan 0.3 0.0 0.5 0.3 0.7 0.4 

Brisbane 0.3 0.1 0.7 0.5 1.0 0.8 

Canberra 0.3 0.1 0.7 0.5 1.1 0.8 

Chiangmai -1.2 -0.3 1.6 1.0 2.4 1.5 

Christchurch 0.1 0.0 0.6 0.4 1.0 0.7 

Darwin 0.0 0.0 1.0 0.8 1.7 1.3 

Eilat 0.5 0.0 0.5 0.2 0.7 0.3 

Emerald 0.2 0.0 0.7 0.5 1.1 0.9 

Finse -0.2 -0.1 0.5 0.3 0.7 0.5 

Florence 0.2 0.0 0.4 0.3 0.7 0.5 

Goldcoast 0.0 0.0 0.7 0.6 1.2 0.9 

Invercargill 0.0 0.0 0.6 0.4 0.9 0.7 

Jerusalem -0.3 -0.1 0.5 0.3 0.8 0.5 

Kingston 0.0 0.0 0.5 0.4 0.9 0.7 

Kise 0.0 0.0 0.3 0.3 0.6 0.4 

Kjeller 0.0 0.0 0.4 0.3 0.5 0.5 

Landvik 0.1 0.0 0.3 0.2 0.5 0.4 

Macquarieisland 0.2 0.0 0.4 0.3 0.6 0.5 

Melbourne 0.0 0.0 0.6 0.4 0.9 0.7 
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Nakhonpathom -0.2 0.1 0.9 0.8 1.4 1.1 

Newcastle 0.1 0.0 0.6 0.5 1.0 0.7 

Osteras 0.0 0.0 0.3 0.3 0.5 0.4 

Perth 0.3 0.0 0.6 0.4 0.9 0.6 

Songkhla -0.1 0.1 1.0 0.8 1.5 1.2 

Sydney -0.1 0.0 0.7 0.5 1.1 0.9 

Townsville 0.1 0.0 0.8 0.7 1.3 1.0 

Trondheim -0.1 0.0 0.3 0.2 0.5 0.4 

Ubonratchathani -0.5 -0.1 1.1 0.8 1.7 1.3 

Wellington -0.1 0.0 0.7 0.5 1.2 0.8 
 

 

 

 

 

Table 11. UV index 1-minute data relative (pointwise) accuracy metrics mean bias, root-

mean-squared-error (RMSE) and mean absolute error (MAE) for each station. The bold font 

indicates better performance. See the Appendix for the error metrics definitions. 

 Relative bias (%) Relative RMSE (%) Relative MAE (%) 

Station CAMS corrected CAMS corrected CAMS corrected 

Adelaide 8.5 -0.1 25.1 20.8 39.2 32.6 

Alicesprings 13.2 0.0 22.4 16.3 34.4 28.9 

Bergen 15.3 4.4 34.7 35.1 57.4 60.4 

Betdagan 15.3 3.8 23.0 14.8 43.9 30.4 

Brisbane 20.6 9.4 29.4 23.5 49.8 42.3 

Canberra 24.9 5.7 36.8 25.8 62.4 43.4 

Chiangmai -11.1 5.4 34.9 31.3 47.9 63.1 

Christchurch 20.7 7.0 40.2 26.3 69.6 46.8 

Darwin 9.5 7.5 28.5 24.2 56.5 45.8 

Eilat 19.8 -0.1 22.2 10.3 32.9 19.0 

Emerald 10.7 1.1 21.9 17.5 35.1 28.2 

Finse -1.6 5.3 29.8 26.3 46.3 44.8 

Florence 30.3 8.9 39.8 28.5 73.1 52.2 

Goldcoast 12.1 6.2 27.9 23.0 47.5 39.8 

Invercargill 25.4 9.7 46.0 32.6 79.2 58.2 

Jerusalem 4.1 3.9 21.5 15.6 45.9 39.4 

Kingston 13.1 6.5 30.6 25.0 51.1 41.1 

Kise 14.2 8.2 33.4 30.5 57.6 54.2 

Kjeller 15.3 6.2 34.5 33.3 53.9 54.4 

Landvik 20.4 8.5 32.3 30.0 61.7 60.1 

Macquarieisland 22.4 2.5 36.9 35.5 54.5 54.6 

Melbourne 6.8 -0.8 28.7 23.1 47.3 36.4 

Nakhonpathom 5.3 11.1 29.3 29.7 44.5 54.1 
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Newcastle 16.3 7.8 30.1 23.7 54.2 44.0 

Osteras 20.2 5.7 35.7 33.3 65.2 63.0 

Perth 12.4 3.6 21.9 16.8 33.3 26.8 

Songkhla 15.3 11.6 35.5 32.0 74.1 71.0 

Sydney 11.6 8.9 30.6 25.8 54.2 46.3 

Townsville 7.6 4.7 24.2 21.5 38.1 38.7 

Trondheim 4.4 5.8 29.3 28.5 45.6 47.4 

Ubonratchathani -1.4 9.3 29.5 28.8 49.0 88.6 

Wellington 17.6 8.4 40.0 29.4 69.5 54.6 
 

 

 

 

 

Table 12. UV index 1-minute data relative (average, avg) accuracy metrics mean bias, root-

mean-squared-error (RMSE) and mean absolute error (MAE) for each station. The bold font 

indicates better performance. See the Appendix for the error metrics definitions. 

 Relative biasavg (%) Relative RMSEavg (%) Relative MAEavg (%) 

Station CAMS corrected CAMS corrected CAMS corrected 

Adelaide 4.8 -0.4 29.8 21.7 18.7 13.4 

Alicesprings 12.0 0.1 27.7 19.3 18.0 10.8 

Bergen 1.5 -0.2 39.1 31.9 23.8 20.3 

Betdagan 8.9 1.4 22.5 13.6 15.1 8.2 

Brisbane 8.2 3.5 30.3 23.6 19.0 14.8 

Canberra 11.9 1.8 40.0 28.7 25.3 17.5 

Chiangmai -25.0 -7.3 51.8 32.0 33.7 21.0 

Christchurch 3.0 -0.3 43.5 29.0 25.7 16.6 

Darwin 0.9 0.6 33.4 26.4 21.2 16.5 

Eilat 12.3 0.1 19.7 9.1 14.4 5.7 

Emerald 4.5 -0.7 24.6 19.4 15.7 12.0 

Finse -12.1 -4.3 38.8 28.6 24.7 17.8 

Florence 8.3 2.2 31.6 23.8 20.5 14.8 

Goldcoast 0.7 0.2 32.4 24.7 19.9 15.4 

Invercargill 1.2 0.8 49.4 34.3 29.1 19.9 

Jerusalem -7.2 -1.3 20.6 13.6 13.4 7.8 

Kingston -0.2 -0.3 37.4 30.2 22.3 18.0 

Kise -0.7 0.6 40.8 30.8 24.7 19.5 

Kjeller 0.3 1.2 36.5 30.5 23.4 20.3 

Landvik 3.7 1.8 31.7 24.2 18.6 15.0 

Macquarieisland 15.7 2.1 46.9 37.0 28.8 23.6 

Melbourne 1.2 -1.1 33.3 25.0 20.7 15.8 

Nakhonpathom -5.1 1.7 34.5 27.2 22.7 18.5 

Newcastle 1.7 0.3 31.3 23.6 19.2 14.5 
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Osteras 1.6 0.0 36.7 28.4 22.1 17.9 

Perth 7.1 1.1 24.0 17.1 15.6 10.9 

Songkhla -1.5 1.2 31.8 25.9 21.5 17.9 

Sydney -2.2 -0.1 36.4 28.2 21.6 17.0 

Townsville 1.3 0.6 28.7 23.0 18.6 14.6 

Trondheim -5.7 -0.8 37.9 29.5 22.7 18.7 

Ubonratchathani -11.8 -1.9 37.2 27.5 24.0 18.3 

Wellington -2.6 -0.5 42.3 29.7 25.7 17.3 
 

 

9 Appendix: Definitions of accuracy metrics 

 

In the following formulas, j indicates the jth value of the quantity of interest, n is the total 

number of values, Y is the quantity of interest (GHI or UVI), and 𝑌̅denotes the average of Y. 

 

Absolute metrics: 

𝐵𝑖𝑎𝑠 =  
1

𝑛
∑ 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑗) − 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗)

𝑛

𝑗=1
 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑗) − 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗))

2𝑛

𝑗=1
 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑗) − 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗)|

𝑛

𝑗=1
 

 

Relative metrics: 

𝑟𝐵𝑖𝑎𝑠𝑎𝑣𝑔 =  
100%

𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐵𝑖𝑎𝑠 

 

𝑟𝑅𝑀𝑆𝐸𝑎𝑣𝑔 =  
100%

𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑅𝑀𝑆𝐸 

 

𝑟𝑀𝐴𝐸𝑎𝑣𝑔 =
100%

𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑀𝐴𝐸 

 

 

𝑟𝐵𝑖𝑎𝑠 =  100% ⋅
1

𝑛
∑ (𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑗) − 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗))/𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗)

𝑛

𝑗=1
 

 

𝑟𝑅𝑀𝑆𝐸 = 100% ⋅ √
1

𝑛
∑ [(𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑗) − 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗))/𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗)]

2𝑛

𝑗=1
 

 

𝑟𝑀𝐴𝐸 = 100% ⋅
1

𝑛
∑ |(𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑗) − 𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗))/𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑗)|

𝑛

𝑗=1
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