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1 Executive Summary 

In WP2 of the CAMEO project task 2.4 aims at improving the CAMS data assimilation (DA) 
methodology by taking model errors and dynamical constraints of long-lived trace gases into 
account through the application of weak constraint 4DVar (WC-4DVar).  

We successfully implemented WC-4DVAR for stratospheric ozone in the first 17 months of the 
CAMEO project and extensively tested it in several DA experiments both in the ECMWF 
CAMS and NWP configurations.   

The evaluation of WC-4DVar including ozone shows a positive impact for both CAMS and 
NWP when the comparison is done against the assimilated observations and a neutral impact 
when verifying against independent data from ozonesondes. 
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2 Introduction 

2.1 Background 

 

Variational data assimilation 4DVar (time plus three space dimensions) aims to find a model 
trajectory that best fits (in a least squared sense) observations over an assimilation time 
window by adjusting the initial conditions supplied for forward model integration. On the one 
hand, in the strong constraint 4DVar, it is assumed that the forward model perfectly represents 
the evolution of the actual atmosphere, and the best fit model trajectory is obtained by 
adjusting only the initial conditions via minimization of a cost function, subject to the model 
equations as strong constraint. On the other hand, relaxing the assumption that the model is 
perfect leads to the weak constraint 4DVar formulation (WC-4DVar), in which the model error 
is introduced as a correction to the time derivatives of model variables, and the best fit model 
trajectory is obtained by adjusting simultaneously both model error and initial conditions 
(Fisher et al. 2005, Trémolet, 2006, 2007).  

WP2 of the CAMEO project task 2.4 aims at improving the CAMS DA methodology by taking 
model errors and dynamical constraints of long-lived trace gases into account through the 
application of weak constraint 4DVar. Following the efficiency of WC-4DVar at correcting 
model systematic errors for temperature, divergence, and vorticity in the stratosphere 
(Laloyaux et al., 2020a, 2020b), this document reports on its extension to include stratospheric 
ozone in both the Atmospheric Composition (CAMS) and Numerical Weather Prediction 
(NWP) configurations. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverable 

This deliverable describes the work carried out in the first 17 months of the project. 

 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP2 T2.4) was 
performed. 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 
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BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 

BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 
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3 Stratospheric ozone chemistry and 4DVar setup 

3.1 Stratospheric ozone chemistry 

On the one hand, the ECMWF NWP applies only a linear parameterization (Hybrid Linear 
Ozone scheme, HLO) to describe stratospheric ozone assuming that the net chemical 
production or destruction of ozone can be described as a specified function of latitude, height, 
and time of year, with perturbations that are locally linear functions of temperature and the 
total column ozone (Cariolle and Déqué 1986, Cariolle and Teyssèdre, 2007). The HLO 
scheme simulates the impact of chemistry on the tendency of ozone, using a blend of inputs 
from analyses and chemistry model calculations.  
On the other hand, CAMS uses an explicit chemical mechanism to simulate chemistry in the 
stratosphere based on the chemical module originally developed for the Belgian Assimilation 
System for Chemical ObsErvations (Errera et al.,2019, BASCOE) to assimilate satellite 
observations of stratospheric composition. Note that ozone is interactive with radiation in both 
the ECMWF CAMS and NWP configurations since the ECMWF model cycle CY48R1. The 
quality of simulated ozone depends on the observations assimilated, the data assimilation 
method and background errors (i.e. quality of the analysis). 
 

3.2 Weak constraint 4DVar formulation 

Let the vector 𝒙𝑘 be used to represent the state of the atmosphere at the time 𝑘, then its 
evolution accounting for the model error is written as, 

𝒙𝑘+1 = 𝑀(𝒙𝑘) +  𝛈 

where 𝑀 represents the model and η its error. In this implementation, the model error 
tendencies are considered constant within the entire assimilation window. 

The WC-4DVar cost function is given by: 

J(𝒙0, 𝛈) =
1

2
(𝒙0 − 𝒙0

𝑏)𝑇𝐁−1(𝒙0 − 𝒙0
𝑏) +

1

2
∑ (𝐻(𝒙𝑘) − 𝒚𝑘)𝑇𝐑𝑘

−1(𝐻(𝒙𝑘) − 𝒚𝒌)𝑁
𝑘=0 +

1

2
(𝛈 −

𝛈𝑏)𝑇𝐐−1(𝛈 − 𝛈𝑏) (2) 

where 𝛈𝑏 is the prior estimate of the model error forcing (which are the model error tendencies) 

estimated in the previous WC-4DVar analysis update and Q = E[𝛈𝛈𝑇] is the model error 
covariance matrix, also called the Q matrix, where E represents the expected value. 
Comparing the strong and weak constraint, in the formulation of the former, it is assumed that 

𝛈 = 𝛈𝑏 = 0.  
 
Ozone assimilation relies on prior background constraints (i.e. the short-range forecast of 
ozone and its error covariance) to control the vertical distribution of ozone information. Note 
that the largest background errors are located around the level of maximum ozone 
concentration (Han and McNally, 2010). 
 

3.3 Neural Network derived model error covariance 

 
The assimilated ozone observations in the ECMWF CAMS and NWP configurations are listed 
in Table 1. The ozone-sensitive IR radiances (assimilated in NWP but not in CAMS) have the 
largest impact in the lower stratosphere below the level of maximum ozone concentration (Han 
and McNally, 2010; Dragani and McNally, 2013). Ozone increments are zero-ed in the top 15 

model levels (above ~ 1hPa) in the CAMS configuration. 
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Table 1: Ozone observations  

Ozone observations CAMS NWP 

AURA MLS Assimilated  Not assimilated 

SNPP OMPS-nadir Assimilated Not assimilated 

METOP-B GOME-2 Assimilated Assimilated 

METOP-C GOME-2 Assimilated Not assimilated 

AURA OMI Assimilated Assimilated 

S5P TROPOMI Assimilated Not assimilated 

AIRS/CRIS/IASI ozone-sensitive IR radiances Not assimilated Assimilated 

In Bonavita and Laloyaux, 2020, it was shown how to set up and train an Artificial Neural 
Network (ANN) to emulate the model error. This ANN implements a nonlinear regression 
model that is trained to learn cumulated model errors over a 12-hour assimilation window 
using analysis increments as predictands and a combination of climatological (lat, lon, 
time_of_day, month) and state-dependent fields (columns of background fields) as predictors. 
The predicted cumulated errors are then scaled by the length of the assimilation window (12 
h) to provide model error tendencies.  

The training data set for the CAMEO work consisted of analysis increments and background 
forecasts collected over the whole year of 2021 for CAMS and NWP configurations (ECMWF 
model cycle cy48R1). The trained ANN is used as a generative model of model error, i.e., we 
use the ANN to generate a representative sample of model errors and compute a Q matrix 
from this sample. The emulator is acting as a filter, learning only the predictable part of the 
model error and filtering out the randomness component. Q is computed offline and does not 

change during the experiment, i.e. is a climatological Q. The computed Q matrix has been 

localised in the horizontal (with a cosine function tapering the correlations to zero between 
4000 and 6000 km) to remove spurious hemispheric-wide correlations; and in the vertical, with 
a quadratic function of the distance from the diagonal to control sampling noise (Bonavita and 
Laloyaux, 2022).  

Figure 1 shows vertical profiles of the standard deviation of ANN-derived model error 
tendencies for CAMS (left panel) and NWP (right panel). The diagnosed model error standard 
deviations are significantly different for CAMS and NWP configurations. The difference is due 
to the ozone-analysis dependence on the stratospheric chemistry scheme, the observations 
assimilated, and background errors. 

  
Figure 1: Vertical profiles of the standard deviation of ANN-derived model error tendencies 
for the CAMS (left panel) and NWP (right panel).  
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The structure of vertical correlations of model error is a crucial aspect of the Q matrix, as it 
determines how model error information is spread in the atmospheric column. As depicted in 
Figure 2, CAMS and NWP show substantial differences in upper levels due to different 
stratospheric chemistry schemes.  

  
Figure 2: Vertical correlations of ANN-derived model error tendencies, before applying 
localisation, for CAMS (left panel) and NWP (right panel). Model level 1 is the top of the 
atmosphere, model level 137 corresponds to the surface. 

As shown in Figure 3, the model error horizontal correlation structure functions (red curves) 
are broader than those of the background error (black curves).  

  
Figure 3: ANN-derived model error (red) and background error (black) horizontal correlation 
structure functions, before applying localisation, at model level 36 (~20 hPa) for CAMS (left 
panel) and NWP (right panel). 

 

  



CAMEO  
 

D2.5   9 

4  WC-4DVar results 

To examine the impact of weak constraint on the data assimilation system, summer (JJA 2022) 
and winter (DJF 2022-2023) season experiments were run in ECMWF model cycle cy49R1 
with and without weak constraint for stratospheric ozone for both CAMS and NWP 
configurations. WC-4DVar was run with a reduction of the standard deviation of the model 
error by a factor 20 for CAMS and a factor 4 for NWP over the 5-50hPa vertical range. The 
standard deviation of the model error is set to zero outside the 5-50hPa vertical range. The 
latter restriction is chosen as we want, as a first step, to focus only on the ozone maximum 
level (~20 hPa) where the background errors are the largest.  

4.1 DA departure statistics 

Analysis and background (i.e. the short-range forecast of ozone) departures statistics (shown 
below) from a cycling data assimilation experiment are one of the main tools to verify the 
effectiveness of any upgrade to the data assimilation system.  

Figure 4 shows a significant reduction in analysis and background observation departures for 
MLS around 20 hPa if WC-4DVar is used for ozone in the CAMS configuration. 
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Figure 4: Relative change in the rms analysis and background fits for MLS ozone profiles 
for CAMS configuration in JJA 2022 (right panels) and DJF 2022-2023 (left panels): 
Northern Hemisphere (top panels); Tropics (middle panels); Southern Hemisphere (bottom 
panels). Values lower than 100% indicate that the WC-4DVar experiment has smaller 
analysis/background departures than the control 4DVar. 

 

 

Figure 5 shows a significant reduction in analysis and background observation departures for 
IASI ozone-sensitive channels between wavenumber 1000 and 1100 cm-1 if WC-4DVar is 
used for ozone in the NWP configuration. 

 

  

  

  

Figure 5: Relative change in the rms analysis and background fits for IASI hyperspectral 
Infrared sensor in JJA 2022 (right panels) and DJF 2022-2023 (left panels) for NWP 
configuration: Northern Hemisphere (top panels); Tropics (middle panels); Southern 
Hemisphere (bottom panels). Values lower than 100% indicate that the WC-4DVar 
experiment has smaller analysis/background departures than the control 4DVar. IASI 
ozone-sensitive channels are between wavenumber 1000 and 1100 cm-1 . 
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4.1 Verification against ozone sondes 

The comparison against ozone sondes shows, as depicted in Figures 6 and 7, a neutral impact 
for both CAMS and NWP configurations. 

  

  

  

Figure 6: Mean Background fit (normalised by observation 
value) to ozonesondes for JJA 2022 (right panels) and DJF 
2022-2223 (left panels) for CAMS: Northern Hemisphere (top 
panels); Tropics (middle panels); Southern Hemisphere 
(bottom panels).  
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Figure 7: Mean Background fit (normalised by 
observation value) to ozonesondes for JJA 2022 (right 
panels) and DJF 2022-2223 (left panels) for NWP: 
Northern Hemisphere (top panels); Tropics (middle 
panels); Southern Hemisphere (bottom panels). 
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5 Conclusion 

In WP2 of the CAMEO project task 2.4 aims at improving the CAMS DA methodology by taking 
model errors and dynamical constraints of long-lived trace gases into account through the 
application of weak constraint 4DVar. Following the efficiency of WC-4DVar at correcting 
model systematic errors for temperature, divergence, and vorticity in the stratosphere 
(Laloyaux et al., 2020a, 2020b), this document reports on its extension to include stratospheric 
ozone in both the Atmospheric Composition (CAMS) and Numerical Weather Prediction 
(NWP) configurations.  

We successfully implemented WC-4DVAR for stratospheric ozone in the first 17 months of the 
CAMEO project and tested it in several data assimilation experiments both in the ECMWF 
CAMS and NWP configurations.  Model bias correction of stratospheric ozone in the 5-50hPa 
vertical range shows that the corrected first-guess trajectory better fits the infrared channels 
that are sensitive to ozone (for NWP) and the MLS ozone profiles (for CAMS). While the WC-
4DVAR for stratospheric ozone is now technically working, further work, including longer 
assimilation experiments and a detailed study of the initial condition increments and the 
increments of the strong constraint 4D-Var, is needed to assess why there is no improvement 
in the fit to independent data from ozonesondes. Further verification is ongoing before 
potential implementation in the next ECMWF model cycle CY50R1. 
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